
Content-Dependent Security Policies in Avionics

Tomasz Maciążek Hanne Riis Nielson Flemming Nielson

Department of Applied Mathematics and Computer Science
Technical University of Denmark

Richard Petersens Plads, Building 324
2800 Kongens Lyngby, Denmark

January 19, 2016

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 1 / 24



Outline

Outline

Background and motivation

The CBIF verification tool

Decentralized Label Model (DLM)

Content-dependent policies

Program validation – high level description

The CBIF tool in action

Conclusion

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 2 / 24



Background and motivation

Background and motivation

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 3 / 24



Background and motivation

Background and motivation

I Separation kernels and secure gateways are used in MILS to ensure
separation and controlled communication between components

I Parts of secure gateways can be validated using static program
analysis

I DLM proves to be insufficient/too cumbersome to use
I Idea: DLM labels should be content-dependent for the gateway

scenario
I policies – regulation of label assignment
I A demultiplexer use case scenario by Müller et al. in article Secure

Information Flow Control in Safety-Critical Systems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 4 / 24



Background and motivation

Background and motivation

I Separation kernels and secure gateways are used in MILS to ensure
separation and controlled communication between components

I Parts of secure gateways can be validated using static program
analysis

I DLM proves to be insufficient/too cumbersome to use
I Idea: DLM labels should be content-dependent for the gateway

scenario
I policies – regulation of label assignment
I A demultiplexer use case scenario by Müller et al. in article Secure

Information Flow Control in Safety-Critical Systems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 4 / 24



Background and motivation

Background and motivation

I Separation kernels and secure gateways are used in MILS to ensure
separation and controlled communication between components

I Parts of secure gateways can be validated using static program
analysis

I DLM proves to be insufficient/too cumbersome to use

I Idea: DLM labels should be content-dependent for the gateway
scenario

I policies – regulation of label assignment
I A demultiplexer use case scenario by Müller et al. in article Secure

Information Flow Control in Safety-Critical Systems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 4 / 24



Background and motivation

Background and motivation

I Separation kernels and secure gateways are used in MILS to ensure
separation and controlled communication between components

I Parts of secure gateways can be validated using static program
analysis

I DLM proves to be insufficient/too cumbersome to use
I Idea: DLM labels should be content-dependent for the gateway

scenario

I policies – regulation of label assignment
I A demultiplexer use case scenario by Müller et al. in article Secure

Information Flow Control in Safety-Critical Systems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 4 / 24



Background and motivation

Background and motivation

I Separation kernels and secure gateways are used in MILS to ensure
separation and controlled communication between components

I Parts of secure gateways can be validated using static program
analysis

I DLM proves to be insufficient/too cumbersome to use
I Idea: DLM labels should be content-dependent for the gateway

scenario
I policies – regulation of label assignment

I A demultiplexer use case scenario by Müller et al. in article Secure
Information Flow Control in Safety-Critical Systems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 4 / 24



Background and motivation

Background and motivation

I Separation kernels and secure gateways are used in MILS to ensure
separation and controlled communication between components

I Parts of secure gateways can be validated using static program
analysis

I DLM proves to be insufficient/too cumbersome to use
I Idea: DLM labels should be content-dependent for the gateway

scenario
I policies – regulation of label assignment
I A demultiplexer use case scenario by Müller et al. in article Secure

Information Flow Control in Safety-Critical Systems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 4 / 24



The CBIF verification tool

The CBIF verification tool

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 5 / 24



The CBIF verification tool

CBIF

I A static validation tool written in C#

I Uses ANTLR for parsing the input programs, and Microsoft’s Z3 for
internal comparisons of policies against the possible program states

I Supports programs written in a subset of C as the input
I Allows annotating the input code with conditional DLM-like policies
I Provides output helpful in tracking down information flow problems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 6 / 24



The CBIF verification tool

CBIF

I A static validation tool written in C#
I Uses ANTLR for parsing the input programs, and Microsoft’s Z3 for

internal comparisons of policies against the possible program states

I Supports programs written in a subset of C as the input
I Allows annotating the input code with conditional DLM-like policies
I Provides output helpful in tracking down information flow problems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 6 / 24



The CBIF verification tool

CBIF

I A static validation tool written in C#
I Uses ANTLR for parsing the input programs, and Microsoft’s Z3 for

internal comparisons of policies against the possible program states
I Supports programs written in a subset of C as the input

I Allows annotating the input code with conditional DLM-like policies
I Provides output helpful in tracking down information flow problems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 6 / 24



The CBIF verification tool

CBIF

I A static validation tool written in C#
I Uses ANTLR for parsing the input programs, and Microsoft’s Z3 for

internal comparisons of policies against the possible program states
I Supports programs written in a subset of C as the input
I Allows annotating the input code with conditional DLM-like policies

I Provides output helpful in tracking down information flow problems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 6 / 24



The CBIF verification tool

CBIF

I A static validation tool written in C#
I Uses ANTLR for parsing the input programs, and Microsoft’s Z3 for

internal comparisons of policies against the possible program states
I Supports programs written in a subset of C as the input
I Allows annotating the input code with conditional DLM-like policies
I Provides output helpful in tracking down information flow problems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 6 / 24



Decentralized Label Model (DLM)

Decentralized Label Model (DLM)

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 7 / 24



Decentralized Label Model (DLM)

Background information

I A labelling system for ensuring information flow security
(confidentiality and integrity alike).

I First published in 1997 by Myers and Liskov.
I Controlled downgrading of security labels

I Declassification for confidentiality
I Endorsement for integrity

I DLM elements:

I Principals – entities that can perform actions in the system; may act as
owners, readers and writers of data.

I Labels – consist of principals; form the security policies that attached
to variables in DLM

{O1 → R1; ...; On → Rn; O1 ←W1; ...; On ←Wn}

I Partial ordering

, example: {A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 8 / 24



Decentralized Label Model (DLM)

Background information

I A labelling system for ensuring information flow security
(confidentiality and integrity alike).

I First published in 1997 by Myers and Liskov.

I Controlled downgrading of security labels

I Declassification for confidentiality
I Endorsement for integrity

I DLM elements:

I Principals – entities that can perform actions in the system; may act as
owners, readers and writers of data.

I Labels – consist of principals; form the security policies that attached
to variables in DLM

{O1 → R1; ...; On → Rn; O1 ←W1; ...; On ←Wn}

I Partial ordering

, example: {A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 8 / 24



Decentralized Label Model (DLM)

Background information

I A labelling system for ensuring information flow security
(confidentiality and integrity alike).

I First published in 1997 by Myers and Liskov.
I Controlled downgrading of security labels

I Declassification for confidentiality
I Endorsement for integrity

I DLM elements:

I Principals – entities that can perform actions in the system; may act as
owners, readers and writers of data.

I Labels – consist of principals; form the security policies that attached
to variables in DLM

{O1 → R1; ...; On → Rn; O1 ←W1; ...; On ←Wn}

I Partial ordering

, example: {A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 8 / 24



Decentralized Label Model (DLM)

Background information

I A labelling system for ensuring information flow security
(confidentiality and integrity alike).

I First published in 1997 by Myers and Liskov.
I Controlled downgrading of security labels

I Declassification for confidentiality
I Endorsement for integrity

I DLM elements:

I Principals – entities that can perform actions in the system; may act as
owners, readers and writers of data.

I Labels – consist of principals; form the security policies that attached
to variables in DLM

{O1 → R1; ...; On → Rn; O1 ←W1; ...; On ←Wn}

I Partial ordering

, example: {A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 8 / 24



Decentralized Label Model (DLM)

Background information

I A labelling system for ensuring information flow security
(confidentiality and integrity alike).

I First published in 1997 by Myers and Liskov.
I Controlled downgrading of security labels

I Declassification for confidentiality
I Endorsement for integrity

I DLM elements:

I Principals – entities that can perform actions in the system; may act as
owners, readers and writers of data.

I Labels – consist of principals; form the security policies that attached
to variables in DLM

{O1 → R1; ...; On → Rn; O1 ←W1; ...; On ←Wn}

I Partial ordering

, example: {A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 8 / 24



Decentralized Label Model (DLM)

Background information

I A labelling system for ensuring information flow security
(confidentiality and integrity alike).

I First published in 1997 by Myers and Liskov.
I Controlled downgrading of security labels

I Declassification for confidentiality
I Endorsement for integrity

I DLM elements:
I Principals – entities that can perform actions in the system; may act as

owners, readers and writers of data.

I Labels – consist of principals; form the security policies that attached
to variables in DLM

{O1 → R1; ...; On → Rn; O1 ←W1; ...; On ←Wn}

I Partial ordering

, example: {A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 8 / 24



Decentralized Label Model (DLM)

Background information

I A labelling system for ensuring information flow security
(confidentiality and integrity alike).

I First published in 1997 by Myers and Liskov.
I Controlled downgrading of security labels

I Declassification for confidentiality
I Endorsement for integrity

I DLM elements:
I Principals – entities that can perform actions in the system; may act as

owners, readers and writers of data.
I Labels – consist of principals; form the security policies that attached

to variables in DLM

{O1 → R1; ...; On → Rn; O1 ←W1; ...; On ←Wn}

I Partial ordering

, example: {A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 8 / 24



Decentralized Label Model (DLM)

Background information

I A labelling system for ensuring information flow security
(confidentiality and integrity alike).

I First published in 1997 by Myers and Liskov.
I Controlled downgrading of security labels

I Declassification for confidentiality
I Endorsement for integrity

I DLM elements:
I Principals – entities that can perform actions in the system; may act as

owners, readers and writers of data.
I Labels – consist of principals; form the security policies that attached

to variables in DLM

{O1 → R1; ...; On → Rn; O1 ←W1; ...; On ←Wn}

I Partial ordering

, example: {A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 8 / 24



Decentralized Label Model (DLM)

Background information

I A labelling system for ensuring information flow security
(confidentiality and integrity alike).

I First published in 1997 by Myers and Liskov.
I Controlled downgrading of security labels

I Declassification for confidentiality
I Endorsement for integrity

I DLM elements:
I Principals – entities that can perform actions in the system; may act as

owners, readers and writers of data.
I Labels – consist of principals; form the security policies that attached

to variables in DLM

{O1 → R1; ...; On → Rn; O1 ←W1; ...; On ←Wn}

I Partial ordering

, example: {A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 8 / 24



Decentralized Label Model (DLM)

Background information

I A labelling system for ensuring information flow security
(confidentiality and integrity alike).

I First published in 1997 by Myers and Liskov.
I Controlled downgrading of security labels

I Declassification for confidentiality
I Endorsement for integrity

I DLM elements:
I Principals – entities that can perform actions in the system; may act as

owners, readers and writers of data.
I Labels – consist of principals; form the security policies that attached

to variables in DLM

{O1 → R1; ...; On → Rn; O1 ←W1; ...; On ←Wn}

I Partial ordering

, example: {A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 8 / 24



Decentralized Label Model (DLM)

Background information

I A labelling system for ensuring information flow security
(confidentiality and integrity alike).

I First published in 1997 by Myers and Liskov.
I Controlled downgrading of security labels

I Declassification for confidentiality
I Endorsement for integrity

I DLM elements:
I Principals – entities that can perform actions in the system; may act as

owners, readers and writers of data.
I Labels – consist of principals; form the security policies that attached

to variables in DLM

{O1 → R1; ...; On → Rn; O1 ←W1; ...; On ←Wn}

I Partial ordering

, example: {A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 8 / 24



Decentralized Label Model (DLM)

Background information

I A labelling system for ensuring information flow security
(confidentiality and integrity alike).

I First published in 1997 by Myers and Liskov.
I Controlled downgrading of security labels

I Declassification for confidentiality
I Endorsement for integrity

I DLM elements:
I Principals – entities that can perform actions in the system; may act as

owners, readers and writers of data.
I Labels – consist of principals; form the security policies that attached

to variables in DLM

{O1 → R1; ...; On → Rn; O1 ←W1; ...; On ←Wn}

I Partial ordering

, example: {A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 8 / 24



Decentralized Label Model (DLM)

Background information

I A labelling system for ensuring information flow security
(confidentiality and integrity alike).

I First published in 1997 by Myers and Liskov.
I Controlled downgrading of security labels

I Declassification for confidentiality
I Endorsement for integrity

I DLM elements:
I Principals – entities that can perform actions in the system; may act as

owners, readers and writers of data.
I Labels – consist of principals; form the security policies that attached

to variables in DLM

{O1 → R1; ...; On → Rn; O1 ←W1; ...; On ←Wn}

I Partial ordering

, example: {A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 8 / 24



Decentralized Label Model (DLM)

Background information

I A labelling system for ensuring information flow security
(confidentiality and integrity alike).

I First published in 1997 by Myers and Liskov.
I Controlled downgrading of security labels

I Declassification for confidentiality
I Endorsement for integrity

I DLM elements:
I Principals – entities that can perform actions in the system; may act as

owners, readers and writers of data.
I Labels – consist of principals; form the security policies that attached

to variables in DLM

{O1 → R1; ...; On → Rn; O1 ←W1; ...; On ←Wn}

I Partial ordering

, example: {A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 8 / 24



Decentralized Label Model (DLM)

Background information

I A labelling system for ensuring information flow security
(confidentiality and integrity alike).

I First published in 1997 by Myers and Liskov.
I Controlled downgrading of security labels

I Declassification for confidentiality
I Endorsement for integrity

I DLM elements:
I Principals – entities that can perform actions in the system; may act as

owners, readers and writers of data.
I Labels – consist of principals; form the security policies that attached

to variables in DLM

{O1 → R1; ...; On → Rn; O1 ←W1; ...; On ←Wn}

I Partial ordering, example: {A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 8 / 24



Content-dependent policies

Content-dependent policies

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 9 / 24



Content-dependent policies

Policy specification

I An extension to the DLM labels

I Equality conditions on slots (identifiers o places in program’s memory)
I Example

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={{Alice->Bob}});
6 (self.det == 2 => self.data={{Alice->Chuck}})
7};

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 10 / 24



Content-dependent policies

Policy specification

I An extension to the DLM labels
I Equality conditions on slots (identifiers o places in program’s memory)

I Example

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={{Alice->Bob}});
6 (self.det == 2 => self.data={{Alice->Chuck}})
7};

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 10 / 24



Content-dependent policies

Policy specification

I An extension to the DLM labels
I Equality conditions on slots (identifiers o places in program’s memory)
I Example

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={{Alice->Bob}});
6 (self.det == 2 => self.data={{Alice->Chuck}})
7};

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 10 / 24



Content-dependent policies

Policy specification

I An extension to the DLM labels
I Equality conditions on slots (identifiers o places in program’s memory)
I Example

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={{Alice->Bob}});
6 (self.det == 2 => self.data={{Alice->Chuck}})
7};

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 10 / 24



Content-dependent policies

Policy specification

I An extension to the DLM labels
I Equality conditions on slots (identifiers o places in program’s memory)
I Example

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={{Alice->Bob}});
6 (self.det == 2 => self.data={{Alice->Chuck}})
7};

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 10 / 24



Content-dependent policies

Policy specification

I An extension to the DLM labels
I Equality conditions on slots (identifiers o places in program’s memory)
I Example

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={{Alice->Bob}});
6 (self.det == 2 => self.data={{Alice->Chuck}})
7};

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 10 / 24



Content-dependent policies

Policy specification

I An extension to the DLM labels
I Equality conditions on slots (identifiers o places in program’s memory)
I Example

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={{Alice->Bob}});
6 (self.det == 2 => self.data={{Alice->Chuck}})
7};

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 10 / 24



Content-dependent policies

Policy specification

I An extension to the DLM labels
I Equality conditions on slots (identifiers o places in program’s memory)
I Example

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={{Alice->Bob}});
6 (self.det == 2 => self.data={{Alice->Chuck}})
7};

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 10 / 24



Content-dependent policies

Global policy

I Formed from the individual policies of variables

I Used internally in the CBIF tool
I Present in the formal type system for reasoning about information

flow security
I Syntax

P ::= X : L
| φ⇒ P

| P1;P2
φ ::= x = n
| φ1 ∧ φ2
| φ1 ∨ φ2

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 11 / 24



Content-dependent policies

Global policy

I Formed from the individual policies of variables
I Used internally in the CBIF tool

I Present in the formal type system for reasoning about information
flow security

I Syntax

P ::= X : L
| φ⇒ P

| P1;P2
φ ::= x = n
| φ1 ∧ φ2
| φ1 ∨ φ2

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 11 / 24



Content-dependent policies

Global policy

I Formed from the individual policies of variables
I Used internally in the CBIF tool
I Present in the formal type system for reasoning about information

flow security

I Syntax

P ::= X : L
| φ⇒ P

| P1;P2
φ ::= x = n
| φ1 ∧ φ2
| φ1 ∨ φ2

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 11 / 24



Content-dependent policies

Global policy

I Formed from the individual policies of variables
I Used internally in the CBIF tool
I Present in the formal type system for reasoning about information

flow security
I Syntax

P ::= X : L
| φ⇒ P

| P1;P2
φ ::= x = n
| φ1 ∧ φ2
| φ1 ∨ φ2

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 11 / 24



Content-dependent policies

Global policy

I Formed from the individual policies of variables
I Used internally in the CBIF tool
I Present in the formal type system for reasoning about information

flow security
I Syntax

P ::= X : L
| φ⇒ P

| P1;P2
φ ::= x = n
| φ1 ∧ φ2
| φ1 ∨ φ2

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 11 / 24



Content-dependent policies

Global policy

I Formed from the individual policies of variables
I Used internally in the CBIF tool
I Present in the formal type system for reasoning about information

flow security
I Syntax

P ::= X : L
| φ⇒ P

| P1;P2
φ ::= x = n
| φ1 ∧ φ2
| φ1 ∨ φ2

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 11 / 24



Content-dependent policies

Global policy

I Formed from the individual policies of variables
I Used internally in the CBIF tool
I Present in the formal type system for reasoning about information

flow security
I Syntax

P ::= X : L
| φ⇒ P

| P1;P2
φ ::= x = n
| φ1 ∧ φ2
| φ1 ∨ φ2

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 11 / 24



Content-dependent policies

Global policy

I Formed from the individual policies of variables
I Used internally in the CBIF tool
I Present in the formal type system for reasoning about information

flow security
I Syntax

P ::= X : L
| φ⇒ P

| P1;P2
φ ::= x = n
| φ1 ∧ φ2
| φ1 ∨ φ2

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 11 / 24



Content-dependent policies

Global policy

I Formed from the individual policies of variables
I Used internally in the CBIF tool
I Present in the formal type system for reasoning about information

flow security
I Syntax

P ::= X : L
| φ⇒ P

| P1;P2
φ ::= x = n
| φ1 ∧ φ2
| φ1 ∨ φ2

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 11 / 24



Program validation – high level description

Program validation – high level description

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 12 / 24



Program validation – high level description

Relation to DLM
Several aspects of validation are similar to DLM.

Validating an assignment
of form:

xv = e;

I The policy of xv (denoted xv) must be at least as restrictive as the
aggregation of policies of variables from expression e (denoted e)

e v xv

I xv must be also at least as restrictive as the policy of the program
counter (pc)

pc v xv

The pc policy arises from the variables present in the conditions of
the enclosing while loops and if conditionals

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 13 / 24



Program validation – high level description

Relation to DLM
Several aspects of validation are similar to DLM. Validating an assignment
of form:

xv = e;

I The policy of xv (denoted xv) must be at least as restrictive as the
aggregation of policies of variables from expression e (denoted e)

e v xv

I xv must be also at least as restrictive as the policy of the program
counter (pc)

pc v xv

The pc policy arises from the variables present in the conditions of
the enclosing while loops and if conditionals

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 13 / 24



Program validation – high level description

Relation to DLM
Several aspects of validation are similar to DLM. Validating an assignment
of form:

xv = e;

I The policy of xv (denoted xv) must be at least as restrictive as the
aggregation of policies of variables from expression e (denoted e)

e v xv

I xv must be also at least as restrictive as the policy of the program
counter (pc)

pc v xv

The pc policy arises from the variables present in the conditions of
the enclosing while loops and if conditionals

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 13 / 24



Program validation – high level description

Relation to DLM
Several aspects of validation are similar to DLM. Validating an assignment
of form:

xv = e;

I The policy of xv (denoted xv) must be at least as restrictive as the
aggregation of policies of variables from expression e (denoted e)

e v xv

I xv must be also at least as restrictive as the policy of the program
counter (pc)

pc v xv

The pc policy arises from the variables present in the conditions of
the enclosing while loops and if conditionals

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 13 / 24



Program validation – high level description

Relation to DLM
Several aspects of validation are similar to DLM. Validating an assignment
of form:

xv = e;

I The policy of xv (denoted xv) must be at least as restrictive as the
aggregation of policies of variables from expression e (denoted e)

e v xv

I xv must be also at least as restrictive as the policy of the program
counter (pc)

pc v xv

The pc policy arises from the variables present in the conditions of
the enclosing while loops and if conditionals

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 13 / 24



Program validation – high level description

Relation to DLM
Several aspects of validation are similar to DLM. Validating an assignment
of form:

xv = e;

I The policy of xv (denoted xv) must be at least as restrictive as the
aggregation of policies of variables from expression e (denoted e)

e v xv

I xv must be also at least as restrictive as the policy of the program
counter (pc)

pc v xv

The pc policy arises from the variables present in the conditions of
the enclosing while loops and if conditionals

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 13 / 24



Program validation – high level description

Relation to DLM
Several aspects of validation are similar to DLM. Validating an assignment
of form:

xv = e;

I The policy of xv (denoted xv) must be at least as restrictive as the
aggregation of policies of variables from expression e (denoted e)

e v xv

I xv must be also at least as restrictive as the policy of the program
counter (pc)

pc v xv

The pc policy arises from the variables present in the conditions of
the enclosing while loops and if conditionals

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 13 / 24



Program validation – high level description

Content-depencency

I The actual policies applying or possible to apply at any moment are
determined by the policy conditions and the possible program states.

I The possible states are determined by constraint environments
resulting from previous statements and conditions on the enclosing
block statements (if/while).

I φpc – the constraint environment holding before the assignment
I ψpc – the constraint environment holding after the assignment

I The final validation formula is:

eφpc t pcφpc v xvψpc

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 14 / 24



Program validation – high level description

Content-depencency

I The actual policies applying or possible to apply at any moment are
determined by the policy conditions and the possible program states.

I The possible states are determined by constraint environments
resulting from previous statements and conditions on the enclosing
block statements (if/while).

I φpc – the constraint environment holding before the assignment
I ψpc – the constraint environment holding after the assignment

I The final validation formula is:

eφpc t pcφpc v xvψpc

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 14 / 24



Program validation – high level description

Content-depencency

I The actual policies applying or possible to apply at any moment are
determined by the policy conditions and the possible program states.

I The possible states are determined by constraint environments
resulting from previous statements and conditions on the enclosing
block statements (if/while).

I φpc – the constraint environment holding before the assignment
I ψpc – the constraint environment holding after the assignment

I The final validation formula is:

eφpc t pcφpc v xvψpc

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 14 / 24



Program validation – high level description

Content-depencency

I The actual policies applying or possible to apply at any moment are
determined by the policy conditions and the possible program states.

I The possible states are determined by constraint environments
resulting from previous statements and conditions on the enclosing
block statements (if/while).

I φpc – the constraint environment holding before the assignment
I ψpc – the constraint environment holding after the assignment

I The final validation formula is:

eφpc t pcφpc v xvψpc

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 14 / 24



Program validation – high level description

Formal validation
In the type system and in the CBIF tool, for validating the fourth line in
the following code snippet:

1int {{A->B}} x = 2;
2int {(self == 1 => {A->B})
3 (self == 2 => {A->B,C})} y;
4y = x;

Two policies would be created from the global policy, and compared on y :

Pleft = (true⇒ x , y : {A→ B});
(y = 1⇒ ∅ : {A→ B});
(y = 2⇒ ∅ : {A→ B,C})

Pright = (true⇒ x : {A→ B});
(2 = 1⇒ y : {A→ B});
(2 = 2⇒ y : {A→ B,C})

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 15 / 24



Program validation – high level description

Formal validation
In the type system and in the CBIF tool, for validating the fourth line in
the following code snippet:

1int {{A->B}} x = 2;
2int {(self == 1 => {A->B})
3 (self == 2 => {A->B,C})} y;
4y = x;

Two policies would be created from the global policy, and compared on y :

Pleft = (true⇒ x , y : {A→ B});
(y = 1⇒ ∅ : {A→ B});
(y = 2⇒ ∅ : {A→ B,C})

Pright = (true⇒ x : {A→ B});
(2 = 1⇒ y : {A→ B});
(2 = 2⇒ y : {A→ B,C})

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 15 / 24



Program validation – high level description

Formal validation
In the type system and in the CBIF tool, for validating the fourth line in
the following code snippet:

1int {{A->B}} x = 2;
2int {(self == 1 => {A->B})
3 (self == 2 => {A->B,C})} y;
4y = x;

Two policies would be created from the global policy, and compared on y :

Pleft = (true⇒ x , y : {A→ B});
(y = 1⇒ ∅ : {A→ B});
(y = 2⇒ ∅ : {A→ B,C})

Pright = (true⇒ x : {A→ B});
(2 = 1⇒ y : {A→ B});
(2 = 2⇒ y : {A→ B,C})

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 15 / 24



Program validation – high level description

Formal validation
In the type system and in the CBIF tool, for validating the fourth line in
the following code snippet:

1int {{A->B}} x = 2;
2int {(self == 1 => {A->B})
3 (self == 2 => {A->B,C})} y;
4y = x;

Two policies would be created from the global policy, and compared on y :

Pleft = (true⇒ x , y : {A→ B});
(y = 1⇒ ∅ : {A→ B});
(y = 2⇒ ∅ : {A→ B,C})

Pright = (true⇒ x : {A→ B});
(2 = 1⇒ y : {A→ B});
(2 = 2⇒ y : {A→ B,C})

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 15 / 24



Program validation – high level description

Formal validation
In the type system and in the CBIF tool, for validating the fourth line in
the following code snippet:

1int {{A->B}} x = 2;
2int {(self == 1 => {A->B})
3 (self == 2 => {A->B,C})} y;
4y = x;

Two policies would be created from the global policy, and compared on y :

Pleft = (true⇒ x , y : {A→ B});
(y = 1⇒ ∅ : {A→ B});
(y = 2⇒ ∅ : {A→ B,C})

Pright = (true⇒ x : {A→ B});
(2 = 1⇒ y : {A→ B});
(2 = 2⇒ y : {A→ B,C})

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 15 / 24



The CBIF tool in action

The CBIF tool in action

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 16 / 24



The CBIF tool in action

Example

1 struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8 struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 17 / 24



The CBIF tool in action

Example

1 struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8 struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 17 / 24



The CBIF tool in action

Example

1 struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8 struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 17 / 24



The CBIF tool in action

Example

1 struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8 struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 17 / 24



The CBIF tool in action

Example

1 struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8 struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 17 / 24



The CBIF tool in action

Example

1 struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8 struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 17 / 24



The CBIF tool in action

Example

1 struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8 struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 17 / 24



The CBIF tool in action

Example

1 struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8 struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 17 / 24



The CBIF tool in action

Example

1 struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8 struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 17 / 24



The CBIF tool in action

CBIF output

1 Validation failed. Offending statement (line 17):
2 out_chan[counter] = input.data;
3
4 Reason:
5 LHS policy is more restrictive than RHS policy
6
7LHS policy:
8((...) =>
9input.det|out_chan={Alice->Bob,Chuck};
10 ((input.det == 2) => input.data|out_chan={Alice->Chuck});
11 ((input.det == 1) => input.data|out_chan={Alice->Bob});
12 ((out_chan.index == 1) => ={Alice->Chuck});
13 ((out_chan.index == 0) => ={Alice->Bob}))
14
15RHS policy:
16input.det={Alice->Bob,Chuck};
17 ((input.det == 2) => input.data={Alice->Chuck});
18 ((input.det == 1) => input.data={Alice->Bob});
19 ((counter == 1) => out_chan={Alice->Chuck});
20 ((counter == 0) => out_chan={Alice->Bob})
21
22Model:
23 out_chan:{Alice} ->[input.det=1, out_chan.index=1, counter=1]

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 18 / 24



The CBIF tool in action

CBIF output

1 Validation failed. Offending statement (line 17):
2 out_chan[counter] = input.data;
3
4 Reason:
5 LHS policy is more restrictive than RHS policy
6
7LHS policy:
8((...) =>
9input.det|out_chan={Alice->Bob,Chuck};
10 ((input.det == 2) => input.data|out_chan={Alice->Chuck});
11 ((input.det == 1) => input.data|out_chan={Alice->Bob});
12 ((out_chan.index == 1) => ={Alice->Chuck});
13 ((out_chan.index == 0) => ={Alice->Bob}))
14
15RHS policy:
16input.det={Alice->Bob,Chuck};
17 ((input.det == 2) => input.data={Alice->Chuck});
18 ((input.det == 1) => input.data={Alice->Bob});
19 ((counter == 1) => out_chan={Alice->Chuck});
20 ((counter == 0) => out_chan={Alice->Bob})
21
22Model:
23 out_chan:{Alice} ->[input.det=1, out_chan.index=1, counter=1]

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 18 / 24



The CBIF tool in action

CBIF output

1 Validation failed. Offending statement (line 17):
2 out_chan[counter] = input.data;
3
4 Reason:
5 LHS policy is more restrictive than RHS policy
6
7LHS policy:
8((...) =>
9input.det|out_chan={Alice->Bob,Chuck};
10 ((input.det == 2) => input.data|out_chan={Alice->Chuck});
11 ((input.det == 1) => input.data|out_chan={Alice->Bob});
12 ((out_chan.index == 1) => ={Alice->Chuck});
13 ((out_chan.index == 0) => ={Alice->Bob}))
14
15RHS policy:
16input.det={Alice->Bob,Chuck};
17 ((input.det == 2) => input.data={Alice->Chuck});
18 ((input.det == 1) => input.data={Alice->Bob});
19 ((counter == 1) => out_chan={Alice->Chuck});
20 ((counter == 0) => out_chan={Alice->Bob})
21
22Model:
23 out_chan:{Alice} ->[input.det=1, out_chan.index=1, counter=1]

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 18 / 24



The CBIF tool in action

CBIF output

1 Validation failed. Offending statement (line 17):
2 out_chan[counter] = input.data;
3
4 Reason:
5 LHS policy is more restrictive than RHS policy
6
7LHS policy:
8((...) =>
9input.det|out_chan={Alice->Bob,Chuck};
10 ((input.det == 2) => input.data|out_chan={Alice->Chuck});
11 ((input.det == 1) => input.data|out_chan={Alice->Bob});
12 ((out_chan.index == 1) => ={Alice->Chuck});
13 ((out_chan.index == 0) => ={Alice->Bob}))
14
15RHS policy:
16input.det={Alice->Bob,Chuck};
17 ((input.det == 2) => input.data={Alice->Chuck});
18 ((input.det == 1) => input.data={Alice->Bob});
19 ((counter == 1) => out_chan={Alice->Chuck});
20 ((counter == 0) => out_chan={Alice->Bob})
21
22Model:
23 out_chan:{Alice} ->[input.det=1, out_chan.index=1, counter=1]

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 18 / 24



The CBIF tool in action

CBIF output

1 Validation failed. Offending statement (line 17):
2 out_chan[counter] = input.data;
3
4 Reason:
5 LHS policy is more restrictive than RHS policy
6
7LHS policy:
8((...) =>
9input.det|out_chan={Alice->Bob,Chuck};
10 ((input.det == 2) => input.data|out_chan={Alice->Chuck});
11 ((input.det == 1) => input.data|out_chan={Alice->Bob});
12 ((out_chan.index == 1) => ={Alice->Chuck});
13 ((out_chan.index == 0) => ={Alice->Bob}))
14
15RHS policy:
16input.det={Alice->Bob,Chuck};
17 ((input.det == 2) => input.data={Alice->Chuck});
18 ((input.det == 1) => input.data={Alice->Bob});
19 ((counter == 1) => out_chan={Alice->Chuck});
20 ((counter == 0) => out_chan={Alice->Bob})
21
22Model:
23 out_chan:{Alice} ->[input.det=1, out_chan.index=1, counter=1]

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 18 / 24



The CBIF tool in action

CBIF output

1 Validation failed. Offending statement (line 17):
2 out_chan[counter] = input.data;
3
4 Reason:
5 LHS policy is more restrictive than RHS policy
6
7LHS policy:
8((...) =>
9input.det|out_chan={Alice->Bob,Chuck};
10 ((input.det == 2) => input.data|out_chan={Alice->Chuck});
11 ((input.det == 1) => input.data|out_chan={Alice->Bob});
12 ((out_chan.index == 1) => ={Alice->Chuck});
13 ((out_chan.index == 0) => ={Alice->Bob}))
14
15RHS policy:
16input.det={Alice->Bob,Chuck};
17 ((input.det == 2) => input.data={Alice->Chuck});
18 ((input.det == 1) => input.data={Alice->Bob});
19 ((counter == 1) => out_chan={Alice->Chuck});
20 ((counter == 0) => out_chan={Alice->Bob})
21
22Model:
23 out_chan:{Alice} ->[input.det=1, out_chan.index=1, counter=1]

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 18 / 24



The CBIF tool in action

CBIF output

1 Validation failed. Offending statement (line 17):
2 out_chan[counter] = input.data;
3
4 Reason:
5 LHS policy is more restrictive than RHS policy
6
7LHS policy:
8((...) =>
9input.det|out_chan={Alice->Bob,Chuck};
10 ((input.det == 2) => input.data|out_chan={Alice->Chuck});
11 ((input.det == 1) => input.data|out_chan={Alice->Bob});
12 ((out_chan.index == 1) => ={Alice->Chuck});
13 ((out_chan.index == 0) => ={Alice->Bob}))
14
15RHS policy:
16input.det={Alice->Bob,Chuck};
17 ((input.det == 2) => input.data={Alice->Chuck});
18 ((input.det == 1) => input.data={Alice->Bob});
19 ((counter == 1) => out_chan={Alice->Chuck});
20 ((counter == 0) => out_chan={Alice->Bob})
21
22Model:
23 out_chan:{Alice} ->[input.det=1, out_chan.index=1, counter=1]

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 18 / 24



The CBIF tool in action

CBIF output

1 Validation failed. Offending statement (line 17):
2 out_chan[counter] = input.data;
3
4 Reason:
5 LHS policy is more restrictive than RHS policy
6
7LHS policy:
8((...) =>
9input.det|out_chan={Alice->Bob,Chuck};
10 ((input.det == 2) => input.data|out_chan={Alice->Chuck});
11 ((input.det == 1) => input.data|out_chan={Alice->Bob});
12 ((out_chan.index == 1) => ={Alice->Chuck});
13 ((out_chan.index == 0) => ={Alice->Bob}))
14
15RHS policy:
16input.det={Alice->Bob,Chuck};
17 ((input.det == 2) => input.data={Alice->Chuck});
18 ((input.det == 1) => input.data={Alice->Bob});
19 ((counter == 1) => out_chan={Alice->Chuck});
20 ((counter == 0) => out_chan={Alice->Bob})
21
22Model:
23 out_chan:{Alice} ->[input.det=1, out_chan.index=1, counter=1]

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 18 / 24



The CBIF tool in action

CBIF output

1 Validation failed. Offending statement (line 17):
2 out_chan[counter] = input.data;
3
4 Reason:
5 LHS policy is more restrictive than RHS policy
6
7LHS policy:
8((...) =>
9input.det|out_chan={Alice->Bob,Chuck};
10 ((input.det == 2) => input.data|out_chan={Alice->Chuck});
11 ((input.det == 1) => input.data|out_chan={Alice->Bob});
12 ((out_chan.index == 1) => ={Alice->Chuck});
13 ((out_chan.index == 0) => ={Alice->Bob}))
14
15RHS policy:
16input.det={Alice->Bob,Chuck};
17 ((input.det == 2) => input.data={Alice->Chuck});
18 ((input.det == 1) => input.data={Alice->Bob});
19 ((counter == 1) => out_chan={Alice->Chuck});
20 ((counter == 0) => out_chan={Alice->Bob})
21
22Model:
23 out_chan:{Alice} ->[input.det=1, out_chan.index=1, counter=1]

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 18 / 24



The CBIF tool in action

Example revised
Problem with out_chan for input.det=1 and counter=1.

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 19 / 24



The CBIF tool in action

Example revised
Problem with out_chan for input.det=1 and counter=1.

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 19 / 24



The CBIF tool in action

Example revised
Problem with out_chan for input.det=1 and counter=1.

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 19 / 24



The CBIF tool in action

Example revised
Problem with out_chan for input.det=1 and counter=1.

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 19 / 24



The CBIF tool in action

Example revised
Problem with out_chan for input.det=1 and counter=1.

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 19 / 24



The CBIF tool in action

Example revised
Problem with out_chan for input.det=1 and counter=1.

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 19 / 24



The CBIF tool in action

Example revised
Problem with out_chan for input.det=1 and counter=1.

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter + 1) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 19 / 24



Conclusion

Conclusion

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 20 / 24



Conclusion

Conclusion

I CBIF is a proof of concept that content-based analysis can be done
on C-like programs.

I The tool has great performance but the complexity grows rapidly with
size of the program, policies and number of principals.

I Tools like this may reduce costs of certification of critical systems
I There’s still a lot of work to be done

I Extension of the supported subset of C
I Optimization
I Introduction of polymorphism
I Integration with external policy specification systems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 21 / 24



Conclusion

Conclusion

I CBIF is a proof of concept that content-based analysis can be done
on C-like programs.

I The tool has great performance but the complexity grows rapidly with
size of the program, policies and number of principals.

I Tools like this may reduce costs of certification of critical systems
I There’s still a lot of work to be done

I Extension of the supported subset of C
I Optimization
I Introduction of polymorphism
I Integration with external policy specification systems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 21 / 24



Conclusion

Conclusion

I CBIF is a proof of concept that content-based analysis can be done
on C-like programs.

I The tool has great performance but the complexity grows rapidly with
size of the program, policies and number of principals.

I Tools like this may reduce costs of certification of critical systems

I There’s still a lot of work to be done

I Extension of the supported subset of C
I Optimization
I Introduction of polymorphism
I Integration with external policy specification systems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 21 / 24



Conclusion

Conclusion

I CBIF is a proof of concept that content-based analysis can be done
on C-like programs.

I The tool has great performance but the complexity grows rapidly with
size of the program, policies and number of principals.

I Tools like this may reduce costs of certification of critical systems
I There’s still a lot of work to be done

I Extension of the supported subset of C
I Optimization
I Introduction of polymorphism
I Integration with external policy specification systems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 21 / 24



Conclusion

Conclusion

I CBIF is a proof of concept that content-based analysis can be done
on C-like programs.

I The tool has great performance but the complexity grows rapidly with
size of the program, policies and number of principals.

I Tools like this may reduce costs of certification of critical systems
I There’s still a lot of work to be done

I Extension of the supported subset of C

I Optimization
I Introduction of polymorphism
I Integration with external policy specification systems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 21 / 24



Conclusion

Conclusion

I CBIF is a proof of concept that content-based analysis can be done
on C-like programs.

I The tool has great performance but the complexity grows rapidly with
size of the program, policies and number of principals.

I Tools like this may reduce costs of certification of critical systems
I There’s still a lot of work to be done

I Extension of the supported subset of C
I Optimization

I Introduction of polymorphism
I Integration with external policy specification systems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 21 / 24



Conclusion

Conclusion

I CBIF is a proof of concept that content-based analysis can be done
on C-like programs.

I The tool has great performance but the complexity grows rapidly with
size of the program, policies and number of principals.

I Tools like this may reduce costs of certification of critical systems
I There’s still a lot of work to be done

I Extension of the supported subset of C
I Optimization
I Introduction of polymorphism

I Integration with external policy specification systems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 21 / 24



Conclusion

Conclusion

I CBIF is a proof of concept that content-based analysis can be done
on C-like programs.

I The tool has great performance but the complexity grows rapidly with
size of the program, policies and number of principals.

I Tools like this may reduce costs of certification of critical systems
I There’s still a lot of work to be done

I Extension of the supported subset of C
I Optimization
I Introduction of polymorphism
I Integration with external policy specification systems

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 21 / 24



Recap

Recap

Background and motivation

The CBIF verification tool

Decentralized Label Model (DLM)

Content-dependent policies

Program validation – high level description

The CBIF tool in action

Conclusion

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 22 / 24



Recap

Thank you for your attention

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 23 / 24



Extras

Semantics of DLM labels

I Partial ordering:

L1 v L2 iff ∀p : readers(L1, p) ⊇ readers(L2, p)
∧ writers(L1, p) ⊆ writers(L2, p)

readers(O → R, p) =
{ {p} ∪ R if p ∈ O

PRIN otherwise
readers(L1; L2, p) = readers(L1, p) ∩ readers(L2, p)

writers(O ←W , p) =
{ {p} ∪W if p ∈ O
∅ otherwise

writers(L1; L2, p) = writers(L1, p) ∪ writers(L2, p)

I Example
{A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 24 / 24



Extras

Semantics of DLM labels

I Partial ordering:

L1 v L2 iff ∀p : readers(L1, p) ⊇ readers(L2, p)
∧ writers(L1, p) ⊆ writers(L2, p)

readers(O → R, p) =
{ {p} ∪ R if p ∈ O

PRIN otherwise
readers(L1; L2, p) = readers(L1, p) ∩ readers(L2, p)

writers(O ←W , p) =
{ {p} ∪W if p ∈ O
∅ otherwise

writers(L1; L2, p) = writers(L1, p) ∪ writers(L2, p)

I Example
{A→ B,C} v {A→ B; C → B}

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 24 / 24


	Background and motivation
	The CBIF verification tool
	Decentralized Label Model (DLM)
	Content-dependent policies
	Program validation – high level description
	The CBIF tool in action
	Conclusion

