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I Separation kernels and secure gateways are used in MILS to ensure
separation and controlled communication between components

I Parts of secure gateways can be validated using static program
analysis

I DLM proves to be insufficient/too cumbersome to use
I Idea: DLM labels should be content-dependent for the gateway

scenario
I policies – regulation of label assignment
I A demultiplexer use case scenario by Müller et al. in article Secure

Information Flow Control in Safety-Critical Systems
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The CBIF verification tool

CBIF

I A static validation tool written in C#

I Uses ANTLR for parsing the input programs, and Microsoft’s Z3 for
internal comparisons of policies against the possible program states

I Supports programs written in a subset of C as the input
I Allows annotating the input code with conditional DLM-like policies
I Provides output helpful in tracking down information flow problems
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Decentralized Label Model (DLM)

Background information

I A labelling system for ensuring information flow security
(confidentiality and integrity alike).

I First published in 1997 by Myers and Liskov.
I Controlled downgrading of security labels

I Declassification for confidentiality
I Endorsement for integrity

I DLM elements:

I Principals – entities that can perform actions in the system; may act as
owners, readers and writers of data.

I Labels – consist of principals; form the security policies that attached
to variables in DLM

{O1 → R1; ...; On → Rn; O1 ←W1; ...; On ←Wn}

I Partial ordering

, example: {A→ B,C} v {A→ B; C → B}
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Content-dependent policies

Policy specification

I An extension to the DLM labels

I Equality conditions on slots (identifiers o places in program’s memory)
I Example

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={{Alice->Bob}});
6 (self.det == 2 => self.data={{Alice->Chuck}})
7};
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Content-dependent policies

Global policy

I Formed from the individual policies of variables

I Used internally in the CBIF tool
I Present in the formal type system for reasoning about information

flow security
I Syntax

P ::= X : L
| φ⇒ P

| P1;P2
φ ::= x = n
| φ1 ∧ φ2
| φ1 ∨ φ2
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Program validation – high level description

Relation to DLM
Several aspects of validation are similar to DLM.

Validating an assignment
of form:

xv = e;

I The policy of xv (denoted xv) must be at least as restrictive as the
aggregation of policies of variables from expression e (denoted e)

e v xv

I xv must be also at least as restrictive as the policy of the program
counter (pc)

pc v xv

The pc policy arises from the variables present in the conditions of
the enclosing while loops and if conditionals
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Program validation – high level description

Content-depencency

I The actual policies applying or possible to apply at any moment are
determined by the policy conditions and the possible program states.

I The possible states are determined by constraint environments
resulting from previous statements and conditions on the enclosing
block statements (if/while).

I φpc – the constraint environment holding before the assignment
I ψpc – the constraint environment holding after the assignment

I The final validation formula is:

eφpc t pcφpc v xvψpc
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Program validation – high level description

Formal validation
In the type system and in the CBIF tool, for validating the fourth line in
the following code snippet:

1int {{A->B}} x = 2;
2int {(self == 1 => {A->B})
3 (self == 2 => {A->B,C})} y;
4y = x;

Two policies would be created from the global policy, and compared on y :

Pleft = (true⇒ x , y : {A→ B});
(y = 1⇒ ∅ : {A→ B});
(y = 2⇒ ∅ : {A→ B,C})

Pright = (true⇒ x : {A→ B});
(2 = 1⇒ y : {A→ B});
(2 = 2⇒ y : {A→ B,C})
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The CBIF tool in action

Example

1 struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8 struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}
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The CBIF tool in action

CBIF output

1 Validation failed. Offending statement (line 17):
2 out_chan[counter] = input.data;
3
4 Reason:
5 LHS policy is more restrictive than RHS policy
6
7LHS policy:
8((...) =>
9input.det|out_chan={Alice->Bob,Chuck};
10 ((input.det == 2) => input.data|out_chan={Alice->Chuck});
11 ((input.det == 1) => input.data|out_chan={Alice->Bob});
12 ((out_chan.index == 1) => ={Alice->Chuck});
13 ((out_chan.index == 0) => ={Alice->Bob}))
14
15RHS policy:
16input.det={Alice->Bob,Chuck};
17 ((input.det == 2) => input.data={Alice->Chuck});
18 ((input.det == 1) => input.data={Alice->Bob});
19 ((counter == 1) => out_chan={Alice->Chuck});
20 ((counter == 0) => out_chan={Alice->Bob})
21
22Model:
23 out_chan:{Alice} ->[input.det=1, out_chan.index=1, counter=1]
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The CBIF tool in action

Example revised
Problem with out_chan for input.det=1 and counter=1.

1struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4}{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7};
8struct s input;
9
10int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13} [2];
14int counter = 0;
15while(counter < 2)[counter >= 0] {
16 if(input.det == counter) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20}
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Conclusion
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Conclusion

Conclusion

I CBIF is a proof of concept that content-based analysis can be done
on C-like programs.

I The tool has great performance but the complexity grows rapidly with
size of the program, policies and number of principals.

I Tools like this may reduce costs of certification of critical systems
I There’s still a lot of work to be done

I Extension of the supported subset of C
I Optimization
I Introduction of polymorphism
I Integration with external policy specification systems
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Recap

Thank you for your attention

Tomasz Maciążek (DTU, Denmark) Content-Dependent Security Policies in Avionics January 19, 2016 23 / 24



Extras

Semantics of DLM labels

I Partial ordering:

L1 v L2 iff ∀p : readers(L1, p) ⊇ readers(L2, p)
∧ writers(L1, p) ⊆ writers(L2, p)

readers(O → R, p) =
{ {p} ∪ R if p ∈ O

PRIN otherwise
readers(L1; L2, p) = readers(L1, p) ∩ readers(L2, p)

writers(O ←W , p) =
{ {p} ∪W if p ∈ O
∅ otherwise

writers(L1; L2, p) = writers(L1, p) ∪ writers(L2, p)

I Example
{A→ B,C} v {A→ B; C → B}
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