


Modeling Information Routing with
Noninterference

Ruud Koolen Julien Schmaltz

January 19, 2016



Formal verification of MILS systems

MILS systems consist of a high-assurance separation kernel,
high-assurance applications, and low-assurance applications.

Verified system requirements generally rely on the correctness
of both separation kernel and some applications.

Formal verification strategy:

Prove separation kernel correctness

Prove correctness of vital applications

Infer global system properties



Formal verification of MILS systems — example

Network manager forwards messages between domains
to authorized receivers only

Global security requirement: low-assurance domains
never receive secret information

High

Medium

Network Manager

Low

Low

Security property relies on correctness of network manager!



Noninterference (Van der Meyden variation)

Intransitive noninterference is a formal specification of the
security properties of separation kernels:

The system contains a set of domains;

Domains can observe certain things about the system;

Each domain can perform actions that change the
system state;

Valid domain interactions are described by a security
policy .

Security requirement:

“Action a of domain d may have observable consequences for
domain e only after execution of actions a1 of d1, . . . , an of
dn such that d d1, d1 d2, . . . , dn e.”



Noninterference — example

Security policy:

A B C

Not allowed — direct influence from A to C:

obs(C) obs(C) obs(C)
B A

Allowed — influence flows via B:

obs(C) obs(C) obs(C)
A B



System verification with noninterference

Noninterference describes the security properties of a
separation kernel for unspecified abstract observation
functions and for arbitrary actions by domains.

How do we formalize and reason about the exact
information accessible to domains?

How do we specify that high-assurance domains behave
in particular ways?

If we want to formally verify properties for systems that
include information-handling domains, we need to solve both
problems!



Modelling information

Noninterference assumes an abstract observation function
obs(domain, state) that cannot be changed by noninterfering
domains.

But noninterference doesn’t say anything about the contents
of this observation function.

Thus, we need to:

encode domain-accessible information in the obs function

formulate axioms on the behavior of this information



Informal information model

A domain can observe chunks of information about its
own state

A domain can forward observable chunks of information
to other domains

I I

I

A1 A2



Formal information model

Observation function returns a set of chunks of information:

obs(domain, state) ∈ P(I)

Each chunk of information is about a certain domain:

subject(i) ∈ Domains

A domain can get access to an information chunk if the
information is about the domain, or the information was
forwarded by a domain with access:

(i ∈ obs(d, step(a, e, s)) ∧ i 6∈ obs(d, s)) ⇒
(subject(i) = d ∨ i ∈ obs(e, s))



Domain behavior

Noninterference models the security properties guaranteed by
the separation kernel:

For all possible domain behaviors: certain bad things do
not happen

Real domains do not take arbitrary actions. They take the
right action at the right time to achieve some purpose.

But noninterference does not give an obvious way to describe
the behaviors of specific domains. . .



Domain program specifications

Noninterference quantifies over all action sequences by all
domains.

A domain specification should specify: “domain d only takes
actions that satisfy some requirement R”.

d1

d2

d3

e1
e2
e3

d2

d2

d4



Domain programs

A program for domain d P is a function from states to
actions of d

Semantics: “domain d will only perform action P (s) in
state s”

We can specify domain behavior using domain programs:

“The action P (s) will always satisfy some requirement
R(s)”

System-global requirements can be verified using domain
programs:

Verify that for all action sequences α that obey program
P , the global requirement holds over α.



Example formalization: network manager

Consider the network manager MILS system:

High

Medium

Network Manager

Low

Low

There is a piece of information, Secret, known to High.

The Network Manager relays information between
domains, and is designed to never leak the Secret to
either Low domain.

Goal: Verify that Secret can never reach Low domains.



Network manager — formal verification

The global correctness goal should follow from the correctness
of the network manager. We should be able to prove:

Assuming that noninterference holds for the given
information flow policy;

Assuming that information in general behaves as
specified by the informatiom axioms;

Assuming that P is a network manager program that
behaves as specified;

Assuming that Secret is unknown to Low in the initial
state s0;

We should be able to conclude: for all action sequences
α that obey P , Secret 6∈ obs(Low, run(α, s0))



Network manager formal verification — results

The requirement on the network manager is a bit more subtle
than naively expected:

For all domains d for which an authorized information
flow path exists to a Low domain without passing
through the NetworkManager:
if Secret 6∈ obs(d, s); then
Secret 6∈ obs(d, step(NetworkManager, P (s), s)).

Otherwise, the Secret can reach Low indirectly!

The initial state should likewise cover all such domains.

For this version: global correctness proved and verified using
the Isabelle/HOL proof assistant :)



Conclusions and future work

Fully formal verification of the high-assurance parts of a
MILS system is feasible. Formal specification and verification
of separation kernel and high-assurance applications can be
used to verify the complete system.

However, accurate specification of the desired behavior of
components remains difficult. The information model of the
network manager is a good start; but it is not a good end.

Much more research can be done to improve on this!



The end

Questions?

